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The hypersonic flow past a wing profile subjected to lift is considered. Effects of 

viscosity anf thermal conductivity in the region of flow outside the trail are neg- 
lected. An analogy is formulated which makes it possible to determine the velo- 
city field by solving the problem of “directional” explosion in which not only en- 
ergy but, also, momentum are imparted to gas. Motion within the viscous trail is 
specified by two terms of the asymptotic expansion of the solution of Navier-Stokes 
equations. 

1. The outer region, Let us consider the hypersonic flow past a wing of infi- 
nite span. We denote the density of gas in the oncoming stream by pm and by ~1, its 
velocity in the direction of the z-axis of the Cartesian system of coordinates X?j. We 
assume that upstream of the bow shock wave shown in Fig. 1 the pressure y, = 0 and, 
consequently, the Mach number M, = 00. The gas is assumed to be perfect, i. e. to 
conform to the equation of state for such gas (the Clapeyron law) and that both specific 
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heats cn and c, are constant. For simplicity we assume that the dependence of the coef- 
ficients of viscosity 2. and thermal conductivity k on specific enthalpy is linear: 1” = 

&W and k = k,w. In the following analysis it is expedient to specify both the inde- 
pendent variables and the unknown functions in dimensionless form, taking pm, U, and 
h, as the fundamental units of reference, 

At some distance from the body the shape of the shock wave ys (z> is primarily de- 
termined by wave drag, while its inner structure depends on dissipative processes taking 

place in the medium. For a gas with h = k = 0 an analogy was formulated in @ -41 
in which the unsteady motion in a space with the number of measurements reduced by 

one simulates a hypersonic stream. With the use of that analogy it is possible to deter- 
mine the velocity field associated with the drag of a body on the basis of the solution 

of the problem of a strong explosion [5 - 91. The law established by Sedov [lo, 111 for 
t&e propagation of explosion waves when applied to hypersonic flows states that ?jz - 
rr’!s. It follows from this that for CE --f co the asymptotic expansion for the transverse 
coordinate of a compression shock may be written as 

ya = (&7.p (+ 1 + b,z-*777/3+ . . .) (1.1) 

where constant b, and exponent M are to be determined from the condition that lift Ft, 
must be independent of the choice of reference planes at x = con& which are used 
for computing the component of momentum of gas passing along the 3 -axis through 
these up- and downstream of the body. The positive and negative signs of the first term 

in parentheses relate to the upper and lower half-planes, respectively. 
We denote the stream function by 9. Solution of the problem of a strong explosion 

necessitates the introduction of the self-similar combination 

q = 4 (bsj-‘J 

as one of the independent variables. 
0.2) 

Let us denote by 1; and v~, the projections of the velocity vector on the .L:- and !/-axes, 

respectively, set x = cP / c, , and seek the expansion for the parameters of gas in the 

form 

(1.3) 

Let us consider the initial data which are to be satisfied by the first and second appro- 
ximatioc functions. It was shown by Sychev [X2] that a strong shock wave at I%, = 30 
has a boundary at its front, The derivatives of parameters of a viscous heat-conducting 
gas passing through that boundary become discontinuous. According to [13, 141 it is 
possible to specify the discontinuity line of derivatives by formula (1.1) and obtain the 
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solution of the Navier-Stokes equations which define the inner structure of a compression 
shock. At a reasonably great distance from the boundary separating the latter from the 
oncoming stream the principal part of the solution yields initial values of functions(l.3). 

The latter can, thus, be used for determining the velocity field in the region adjacent to 
the shock wave smoothed by viscosity and thermal conductivity. It will be readily seen 
that the initial data which follow from the Hugoniot conditions at the front of a strong 

discontinuity in a perfect gas are also valid for functions ~~~~~~ . . . , j,11. Moreover, if 
in formula (1.1) the exponent /n ( 3/2, the initial data for functions L’,!.~, . . . , !/IJ 
are exactly the same as those following from Hugoniot’s formulas. 

We draw the reference planes normal to the direction of the oncoming stream, one up- 
the other downstream of the body at distance CE (Fig. 1). To derive the expression for 

lift F, we calculate the component of the momentum of gas passing through these planes 
and projected on the ?/-axis. We have 

F,= - 3 $+ 1) b’JbmRs-@‘n-l) 3, B = 1 -t ;; VNlf (7,) (21, (1.4) 
j 

By setting m = i12, we eliminate in the last formula the z -coordinate. The above 

I 
reasoning obviously implies that for 
m = '/, it is immaterial for the deri- 

P- vation of initial values of unknown func- 

UC0 tions whether the discontinuity line of 

=z 
gas parameter derivatives, which bounds 

X the diffused compression shock, is speci- 

-_ fied by equality (1.1) or by the simple 

shock front with Hugoniot’s conditions 
at it. 

Fig. 1 

Let us now turn to the Navier-Stokes 
equations. Denoting the Prandtl num- 

ber by Np+ and using Mieses’ variables 
these equations are of the form 
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Substituting expansions (1.3) into the NavierStokes equations, we obtain two systems of 
ordinary differential equations. The nonlinear system of the first approximation yields 
the solution of the problem of strong explosion, whose closed form was given by Sedov 

[lo, 111. The system of the second approximation 

1 
v - x12 = x + 1 L 2V,llqm + x 

( 
E - EC,] (1.6) 

is linear. 
PI2 = PllWl2 + Wl,Pl, 

It is immediately seen that this system is independent of terms related to viscosity and 

thermal conductivity which appear in Eqs. (1.5) in the case of a real medium. Thus the 
perturbation field structure in the external region bounded upstream by the shock wave 
front is in the first and second approximation independent of dissipative effects. We may 
also note that the first of Eqs. (1.6) stands out from the others in that it is used for find- 

ing 2’,t2 after functions l’U12r . . . , y12 have been determined. The latter satisfy the 

system of equations which arises in the investigation of the second approximation in the 
theory of one-dimensional nonstationary motions. This implies that within the specified 
accuracy the perturbation field outside the trail can be constructed by using theprinci- 

ple of equivalence [l - 41 according to which stream parameters in any plane s =const 
can be determined independently of the values of its parameters in other planes. 

Equations (1.6) must be integrated from points ~1 = + 1, where 

4--x 
~.YlZ = + x' 

2--x 
7- 1 ’ uy12 -- %+ 1 I P12 -= T & 

2-X 5-x 2 
Pl2 = 3qy-J ) 2012 = - X,1’ Yl2 = - x+1 

respectively. 

2. Analogy with directional explotion, With allowance for initial data 
the second of Eqs. (1.6) yields 

Pl2 == rl2'1/12 (2.1) 

In the theory of one-dimensional nonstationary motion time t represents the z-coordinate, 

the quantity 

is taken as the self-similar combination instead of (1.2), and the expansion of expressions 
for velocity, density, and pressure are of the form 

4 
v = 3(x+1) (;)“” [f (Q + bl ,t-‘,3/1,2 (Q + . . .] 

P= ;% [g (8 -1 bl:,t-‘,‘” el, 2 (E) + . . . I 

” [h (Q + 6, ,t-‘“h,,, (E) + . . .] 

(2.2) 

It is shown in [ 151 that variation functions are of the form of integral 
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E (gfv* + f&:1) (2.3) 

which conforms to the Hugoniot conditions for a strong shock front. Let us reduce formu- 
la (2.1) to the form (2.3). To do this, we first of all establish the expression for the in- 
crement of the transverse coordinate y12. Using the relationship 

dyll X-1 1 
*= 

-_ 
3c + 1 PI1 

between functions of the first approximation and of the fourth and fifth of Eqs. (1.6). we 

obtain 
Yl2 = & [Q/l, - 2 (x - 1)q$, 1 (2.4) 

Comparison of expansions (1.3) and (2,2) yields 

8 dg dh 
V 1111 = fs 2 + Yl, r< ') Pl?=g?A-Y12~r ~12 = h?iz + ~12 do 

Substituting into these the expression (2.4) for ?/ r2, we derive two equations which deter- 
mine z+,r2 and plz. By solving the obtained equations with allowance for tl =T pllX /pl,= 

gX/ h , we obtain solutions , 

We now readily find expressions for pressure increments 

We substitute the derived expressions for functions ug12 and pr2 into formula (2.1). 

Simple transformations show that the latter is a different form of integral (2.3). An im- 
portant qualitative conclusion follows from this. As shown in [ 151, integral (2.3) exists 
only when the expression for the momentum of the medium in the perturbed region con- 
tains a term indeoesdent of time. F relation to the considered problem this means that 

not only energy, but also momentum is impar- 

ted to the gas by the explosion. Xn every plane 

X= const parameters of a hypersonic flow 

around a wing are the same as those of an ex- 
plosion wave whose propagation is accompanied 

by momentum transfer along the y-axis. 

Formula (2.1) makes it possible to derive a 
first order differential equation for function 
t&r and obtain its solution in quadratures 
which, owing to its unwieldiness, is not presented 
here. Integration of the equation for vuyIz by 
numerical methods is much more convenient. 
The behavior of functions L+,~~, plz and plz 
is shown in Fig. 2. 

Fig. 2 

The asymptotics of the first approximation 
function for 7 -+ f 0 is known from the 
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solution of the problem of a strong explosion 

1’11 = lz;y 7) lliX -+ . * ., p11 = h@ i_ . . .) Wll =;‘ hp-l)‘x 1 q 1-l’” + . . . 

!A1 =3y& &ix { 1, y)lx + _ * ., ho = $ (x + 1) k, 

Coefficients k, can be found in Sedov’s monograph fl6], Second approximation func- 
tions for ‘tl -+-& 0 are defined by asymptotic formulas 

y12 CT; - 
:‘t(X- 1) 

(X -.- 1,l (2 - xf 
“;I. x J q j-~2-~):2~ +. . . . 

In these ex~nsions the pressure increment p,, -z= 0 when “‘1 = 0, 

3, The laf~~fn~r trail, In the vortex trail region it is no longer possible to 
neglect viscosity and thermal conductivity. Dissipative effects play a major part in that 
region. Sychev, who had compared the relative magnitude of convective terms and terms 
affected by heat transfer in the Navier-Stokes equations g’l], came to the conculsion that the 
analysis of the trail of (1.2) necessitates the introduction of the new self-similar variable 

< = $ (bz) -1,o zlr q$i (3.1) 

Expansions for gas parameters are of the form 

Only one term is retained in the formula for pressure, since the correction to EI)~~ is of 
the order of ~;-(2r-i),‘2w < x-‘!z* when x -+ 00. 

Let us assuine that formulas (1.3) and (3.2) specify expansions for the outer and inner 
regions, respectively, Mat~hiug of these two expansions is based on the existence of a 
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region where they overlap [18, 191. This provides the boundary conditions which must 
be satisfied by the unknown functions for 1 5 1 --t co . The subsequent analysis requires 
not only knowledge of the boundary conditions, but also a correct estimate of the usually 
neglected remainder terms. Formulas (1.3) are insufficient for establishing the form of 
the latter, and terms of higher order of smallness than those so far considered must be 
added to the right-hand sides of these formulas. We omit, for brevity, all computations 
and present only the final results for the first approximation functions. For 5 + + 00 
we have 

uxsr + 15 lpx + 0 (I 5 p+l)y, y!,21 4 & 15 y-l),px + 0 (I 5 I-(x+l)q (3.3) 

pzr ---z I 5 y -1 0 (I 5 yx)q, P21--> 1 

w21 - ( 5 (-1:x + 0 (, 5 Ip+w), yzl 3 + I 5 px + 0 (I 5 p+l), “) 

Boundary conditions for j -+ f 00 for second approximation functions, derived in the 

same manner, are 
u,22 _, F, 5 I-(2+%2x+ (j (, 5 1-(2+5’W), c’1122_‘, 5 (-(2-x).2x + 0 (, 5 (-(2+3x)!2K) 

(3.4) 

u)22 _, 5 , 5 /-(2+X):2X + 0 (, 5 1-(2,-5XJ ‘1X), y,, _ , 5 \-(2-X), 2X + ,y (, 5 1+3x) ,X) 

Let us substitute expansions (3.2) into the Navier-Stokes system of equations. Since 

the second of Eqs. (1.5) implies that dp21 / dc = t.,l it is obvious that pressure across 
the hypersonic trail does not vary in the considered approximation. Allowing for bound- 

ary condition (3.3) we obtain pT1 z 1. Taking this equality into account, after some 
simple transformations, we can write the system of first approximation equations thus 

(3.5) 

16x 
3(x" - 1) 

h 
o 

In this system the first equation is the key one, since after its integration it is possible 
to find solutions of the remaining equations. If -VP,. = 1 and u,,~~ -z wpl, the results 

are considerably simplified [17]. For any arbitrary Prandtl number we substitute the 
independent variable 

51 = - 3“& - 
3 (X” - 1) iv/+ [” (3.6) 

the result of which is 
11.1 

Cr$+[+ - +-+&=o 

which is the canonical form of the so-called confluent hypergeometric equation PO]. 
Using the conventional notation for such functions, for their general solution we have 

Turning now to formulas (3.1) and (3.6) we note that the first term in the right-hand 
side of the latter represents a solution symmetric about the streamline $ -1 0, while 
the second term provides an antisymmetric solution, The first approximation considered 
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here defines the perturbation field in the trail associated only with the drag of the body 
in the stream. For such field the distribution of gas parameters in the upper and lower 

half-planes must, evidently, be symmetric, This implies that constant c2 = 0 , which 

is confirmed by the form of boundary conditions (3.3). For the determination of con- 
stant c1 we use the asymptotic expansion of hypergeometric functions for c1 --f - 00. 

Finally we obtain 

l&i = 

We pass to the second equation of system (3.5). Substituting the independent varia- 
ble c2 -- <I i Np,., as the result we obtain the confluent hypergeometric equation 

As the fundamental system of solutionsofthe homogeneous equation corresponding to 

(3.8) we select the integrals 

The plus and minus signs in the right-hand side of (3.9) relate to t$!i and z$jt, respec- 

tively. It is convenient to consider integrals t$ and z$, in the plane of the complex 

variable z --= - 5, + iw. In that plane the motion along the straight line .r j= const 

from the upper to the lower houndaty of the vortex trail is accomplished by going around 

t 

the positive real semiaxis in the direction shown in Fig. 

W 
3 by arrows. The linear combination of confluent hyper- 

?: geometric functions contained in ~$2~ may be written 
+-- i) in the form of function [‘JO] _. C. 

I ‘P 7 

Fig. 3 

3(%-i) 1 
q--g--, T; 2) 

It will be seen that the linear combination of hypergeometric functions which define 
t$t reduces to the same Tricomi y-function, if for its argument z we substitute z’ , 

where I~‘I=lzlandsrgz’-argz-2n. 
The Wronskian W,, of the selected fundamental system of solutions is specified by 

and the particular solution r,:i of the nonhomogeneous equation (3.8) is 

It is now obvious that 

It remains to determine the arbitrary constants ca and cd. If initially 5 -+ + co, 

then arg z = 0 and arg z’ = -2n. To determine the principal terms of the expan- 
sion of integral t& we use the asymptotics of the Y-function [ZO]. The asymptotic 
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behavior of vl,“,: is established by substituting asymptotic expansions for confluent hyper- 
geometric functions into formula (3.9). These results can be used for proving that the 
principal term of the asymptotic expansion of the particular solution z&i corresponds 

exactly to conditions (3.3). Taking into account the order of correction terms appear- 
ing in these conditions, we obtain 

‘I 
c 

4 
= 2 (z - 1) -s ~~~V$j)r (z) 

x I po-w‘2l(z) dLz2 (3.11) 
0 

where the small angled line over the improper divergent integral denotes its finite part 
in accordance with Hadamard’s definition. The reasoning in the case of 5 -+ - cc, 
arg z = 2n and arg z’ = 0 is similar. The behavior of integral -&i is determined 
by substituting asymptotic expansions for hypereeometric functions into formula (3.9), 

while the principal terms of the expansion of 2$% are determined by the asymptotics of 
the v-function. As the result we have 

I- 

(3.12) 

Arguments of the complex variables z and z’ in formulas (3.11) and (3.12) are zero. 

This with the properties of the Wronskian CV,, taken into account implies that cs L_ cp. 

Although both fundamental solutions z{i\ and $i, contain symmetric and antisymmetric 

parts, the particular solution r&t is symmetric. A simple test will show that for equal 
constants ~‘a and c, function vXp, defines a velocity field which is symmetric about the 
streamline I# = 0 . 

Let us pass to the fourth equation of system (3.5). Taking into consideration the order 
of correction terms in formulas (3.3) or the requirement for the symmetry of solution in 
the considered approximation, after its integration, we obtain 

The fifth equation of system (3.5) can be converted into a finite relationship, hence 

where functions t~,!i and ?~,i are defined by equalities (3.7) and (3.13). respectively. 

4. The second rpproximrtion. Let us investigate the effect of the applica- 
tion to the body of a lift force on the structure of the vortex trail in a hypersonic stream. 

First, let us determine the projection on the !/-axis of the momentum component of gas 

transmitted through that part of the plane I = const which contains the vortex trail 

(Fig. 1). By setting .c -+ 00 and using expansion (3.2) we can readily show that the 
integral defining that component is insignificantly small. In other words, lift can be de- 
termined only by the parameters of the outer flow region. Calculations show that con- 
stant B in formulas (1.4) is equal 0.683. 

Although the transfer of momentum of gas via the vortex trail can be neglected in the 
calculation of lift, the determination of associated perturbations of the velocity field 
requires that second terms in the right-hand sidesofexpansions (3.2) are taken into 
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account. The latter satisfy the system of ordinary differential equations 

whose structure is analogous to that of system (3.5). It follows from Eqs. (4.1) that in 
the considered approximation the hypothesis of plane sections is satisfied. In this case 

the key equation is again the first one which by the introduction of the independent vari- 
able by formula (3.6) reduces to the form 

To satisfy boundary conditions (3.4) it is necessary to choose the antisymmetric solu- 

Perturbations of specific enthalpy resulting from this solution change their sign at inter- 

section with the streamline ?c) _= 0. The introduction of the independent variable ca 
into the second equation of system (4.1) reduces it to 

As the fundamental system of solutions of the corresponding homogeneous equation (4.3) 

where the plus and minus signs relate to t$2z and I.::?, respectively. In the plane of the 
complex variable z the first of these, r.,$ is defined by the Tricomi function 

‘1’ i 
i%-6 1 

\ 
---37; 4% z:: 

The second integral can be reduced to the same ‘lr-function by the substitution of argu- 
ment Z’ for z The expression 

is valid for the Wronskian W,, . 
Let the particular solution VT,, of the nonhomogeneous equation (4.3) be derived in 

accordance with the rule by which function u:~, is specified. It is then possible to apply 
to it equality (3.10) in which subscripts 22 are substituted for 21. For the general solu- 
tion we have the formula 

1’VJ.J (1’ c,-,l’,‘;z .C “1 f 
CGL \‘.‘.’ 4 I/‘., ‘.! 
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Arbitrary constants cj and cF are determined by boundary conditions (3.4) in which esti- 
mates of correction terms play an important part. Setting 5 --t -I- co, we establish the 
principal terms of expansion $$ on the basis of the asymptotics of the Tricomi Y -fuuc- 

tion, and use formula (4.4) for computing the integral $;!j2 . For 5 -+ - 00 the beha- 
vior of vidj2 is determined by substituting asymptotics of confluent hypergeometric func- 
tions into formula (4.4), while the principal terms of expansion of integral Z& are 

determined by using its expression in terms of the \I’-function. 
We note that every point of the contour shown in Fig. 3 satisfies the equality 

Substituting it into the right-hand side of formula (4.2), we finally obtain 

where the arguments of the two complex variables z and z’ are zero and, consequently, 
cj = - es. It can be shown that under this condition the velocity field perturbations 
associated with function ussz are antisymmetric with respect to the streamline 9 = 0. 

With allowance for boundary conditions (3.4) integration of the fourth equation of 

system (4.1) yields 

y,: := 1‘ i--- :‘x-& ‘) [‘-’ I+; i” (;, ‘1 +](2-x’ 4r<IJ (2, + ; 51) 4.5) 

The fifth equation of that system yields 

where functions EP,~ and &? are defined by equalities (4.2) amd (4.5). 

Under the effect of lift the zero streamline is no longer the axis of ~rnrnet~ of the 
flow, whose equation, derived from the last of expansions (3.2), is 

This shows that the displacement y. of the zero streamline from its initial position infi- 
nitely increases with distance from the body. Comparison of formulas (1.4) and (4.6) 

shows that the zero streamline deflects in the direction of lift F,,. This is not a trivial 
conclusion and is explained by the previously noted possibility of neglecting the transfer 
of momentum of gas through that part of the reference plane .-L = const which com- 

prises the vortex trail, 

6. Particular cams, The value x = s/-, is particular for the first approxima- 
tion solution which describes the trail flow. One of the linearly independent integrals of 
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the related homogeneous equation (3.8) may then be represented by the equality 

Owing to exponential attenuation with 5 -+ t 00 this equality is, obviously, the intrin- 

sic solution of the problem. A similar situation occurs when second approximation for- 

mulas are analyzed for x = (i/s. In that case we take the above eigenfunction ~22~ = 
V$ as one of the fundamental integrals of Eq. (4.3) in which the right-hand side is 

equated to zero. Thus for x = “i, or (i/5 the velocity field within the vortex trail is 
not uniquely defined by the method of matching outer and inner asymptotic expansions. 

We note in conclusion that the value of exponent m = ‘I2 which is determined by 

the requirement for a finite lift, may in a certain sense be considered to be an eigen- 

value. For instance, let a flow be specified which in the outer region satisfies expansions 
(1.3). It is required to extend this flow to the neighborhood of the streamline Q 1 0. 

It appears that at least in the range 0 < m < 1 the velocity field pertains to the free 
stream in the vortex trail only for m = 1/z , while for any other m it is necessary to 
introduce a half-body which extends to infinity. The results of the investigation of hyper- 
sonic trail, presented above, are essentially based on the fact that in accordance with the 

asymptotic formulas (2.5) the pressure perturbation pi? --f 0 when 1 q 1 -+ 0. For 
m + I/, the asymptotic expansion of function pia commenses with a certain constant 

whose magnitude for rl + + 0 is not the same as that for 11 -+ - 0. 
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The problem of irregular interaction of weak shock waves, which occurs in the ana- 

lysis of interpenetration of two waves of different intensities at small interaction 
angle [ 1, 21, is considered. It is not possible to solve this problem in linear confi - 
guration when the region adjacent to the Mach wave front shrinks to a point, which 
results in it becoming a nonlinear problem, Behavior of the solution throughout the 
interaction region is analyzed by the method of matching asymptotic expansions 
13, 41. The external problem is solved in linear formulation. A boundary value 
problem for the system of nonlinear equations of short waves [5], which takes into 
account the linking of its solution with the linear external problem and with solu- 
tions in the neighborhood of reflected fronts at the inner region boundary, is formu- 

lated for the inner region in the neighborhood of the Mach wave front. The effect 
of the initial state parameters on the pattern of flow is investigated and an appro- 
ximate solution of the problem is derived. 

1, Let us consider the interaction of two plane shock waves in a stationary perfect 
polytropic gas running off a wedge of angle a (Fig, 1, a). Let the waves meet at instant 
of time t = 0 at point 0 and begin to interact. We select the system of coordinates 

so that the 0x -axis lies along the wedge axis of symmetry. For weak shock waves of 


